
Efficient Zero-Cost Neural Architecture Search for
Personalized AI Systems in Cloud-Edge Networks

Kai Huanga, Yingchi Maoa, Benteng Zhanga, Yihan Chena, Yuchu Chena, and Jie Wub

a College of Computer Science and Software Engineering, Hohai University, Nanjing, China
b Center for Networked Computing, Temple University, Philadelphia, USA

241307010036@hhu.edu.cn, yingchimao@hhu.edu.cn, 230407040003@hhu.edu.cn,
241307010028@hhu.edu.cn, 2106010213@hhu.edu.cn, jiewu@temple.edu

Abstract—Neural Architecture Search (NAS) can discover
the optimal neural network architecture within a given Su-
perNet through automated search, which can improve model
performance and reduce computational overhead on resource-
constrained devices. Due to the vast SuperNet requiring sub-
stantial computational resources for training and evaluation,
the search process is costly and difficult to apply directly
on End Devices (EDs) with limited computational resources.
Moreover, existing methods utilize zero-cost proxies to reduce
computational costs in NAS, but overlook limited computational
resources on EDs and waste a large amount of computational
resources on the cloud server. Deploying NAS on the cloud
server can effectively address this issue. The cloud server is
used to search for the optimal Subnet, and EDs only need to
train the Subnet based on local data. To this end, we propose a
nonlinear aggregation-based Neural Architecture Search method
based on Feature and Gradient zero-cost proxies (FG-NAS).
Specifically, EDs upload local data characteristics to the cloud
server, and then the cloud server uses FG-NAS to obtain an
optimal SubNet model from the SuperNet based on the uploaded
data characteristics. Finally, the cloud server sends the optimal
SubNet to EDs, which can reduce the computational burden
on EDs. Furthermore, FG-NAS evaluates the accuracy of neural
architectures by considering both feature proxies during forward
propagation and gradient proxies during backward propagation.
Experiments on three datasets demonstrate that compared to
current mainstream zero-cost proxy methods, FG-NAS can
improve evaluation accuracy by an average of 1.04% and reduce
single-network evaluation time by up to 2.45%.

Index Terms—Neural architecture search, zero-cost proxy,
cloud-edge collaboration

I. INTRODUCTION

With the increasing prevalence of End Devices (EDs) in
Edge Networks (ENs) [1], the deployment and optimization
of neural network models have become pivotal issues in
the field of cloud-edge collaboration [2]. By utilizing cloud-
edge collaboration, compute-intensive NAS tasks can be of-
floaded to the powerful cloud server to search for the optimal
Subnet. EDs only handle lightweight local training tasks.
This collaboration can reduce the NAS latency and improve
the NAS accuracy. Neural Architecture Search (NAS) [3],
a technique for automating the design of high-performance
neural networks [4], has emerged as a cornerstone of Artificial
Intelligence (AI) research. The objective of NAS is to identify
network architectures that excel in specific tasks while being
well-suited for efficient inference on EDs. However, Chal-
lenge 1 in Fig. 1 has demonstrated that traditional NAS meth-

Cloud sever

Challenge 2. Deploying NAS on EDs
wastes a large amount of computational
resources on the cloud server.

Challenge 1. The SuperNet requires
substantial computational resources
for training to select SubNets, but
the limited computational resources
and storage capacity on EDs can
lead to poor search accuracy and
slow search speed.

Local data Wireless
communicationEDs

Fig. 1. Two challenges in NAS for resource-constrained EDs in cloud-edge
networks.

ods often encounter challenges such as excessive computa-
tional resource demands and prolonged training durations. For
example, Zoph et al. proposed the Reinforcement Learning-
based NAS method [3], which achieved an 2.50% error rate on
the CIFAR-10 dataset but required eight hundred GPUs and
weeks of training. Similarly, DARTS necessitated four GPUs
and four days of training for searches on the ImageNet dataset.
Such methods are impractical for EDs constrained by limited
computational and storage capacity. Therefore, developing an
efficient and low-cost [5] NAS method is important not only
for enhancing the intelligence of EDs but also for advancing
the broader adoption of edge computation.

To save computational resources on EDs, zero-cost proxy-
based methods [6] have garnered attention for the ability
to rapidly evaluate network performance without requiring
training. For instance, NASWOT leverages statistical charac-
teristics of network activations during forward propagation to
predict performance [7], which achieves second-level evalu-
ation time on the CIFAR-10 dataset without requiring GPU
support. Similarly, TE-NAS introduced a multi-proxy evalua-
tion framework by integrating a network’s expressiveness and
trainability [8], which further enhances prediction accuracy.
Other methods, such as Zen-NAS [9] and TransNAS [10],
utilize network topology or pre-trained model priors to accel-

erate the search process. However, as shown in Challenge 2
in Fig. 1, existing zero-cost proxy-based methods deploy
NAS on EDs, which fail to fully utilize the computational
resources on the cloud server. In addition, existing zero-
cost proxy-based methods still face other challenges. 1) As
feature correlation alone may neglect training dynamics, the
narrow scope of single-proxy approaches leads to incom-
plete evaluations, which causes prediction bias. 2) As linear
weighting schemes struggle to scientifically reflect the im-
portance differences among proxies, simplistic combinations
of multiple proxies limit assessment precision. 3) Insufficient
generalization resources can lead to poor performance under
heterogeneous data distributions on EDs. For example, the
prediction accuracy of NASWOT drops by approximately
3.5% on the ImageNet16-120 dataset when data distributions
change. These issues indicate that existing zero-cost proxy-
based methods require further improvements to meet practical
needs for resource-constrained EDs.

Motivated by these issues above, we aim to address the
single-proxy evaluation instability and multi-proxy computa-
tional resource overconsumption inherent in Zero-Cost NAS.
To this end, we propose a nonlinear aggregation-based Neural
Architecture Search method based on Feature and Gradient
zero-cost proxies (FG-NAS). In brief, by synergizing feature
proxies from forward propagation and gradient proxies from
backward propagation via dynamic nonlinear aggregation, FG-
NAS can achieve precise neural architecture search. To reduce
the NAS latency and improve the NAS accuracy, we deploy
FG-NAS on cloud servers [11], where local EDs upload the
data characteristics to the cloud server. The cloud server then
uses FG-NAS to search for the optimal model architecture
based on the uploaded data characteristics and the SuperNet.

The contributions of this paper are depicted as follows.
• Multi-Dimensional Feature Proxy. During forward

propagation, FG-NAS quantifies feature information (FI)
by computing the entropy of the feature matrix and as-
sesses feature correlation (FC) using Pearson correlation
coefficients and nuclear norms, providing a comprehen-
sive measure of the network’s expressive capacity.

• Gradient-based Proxy. In backward propagation, FG-
NAS incorporates gradient change (GC) and impor-
tant layer gradient information (GI), which utilizes
Rademacher random vectors to optimize Jacobian matrix
computations. This approach evaluates the network’s
training capability and convergence speed while reducing
computational complexity.

• Dynamic Nonlinear Aggregation Mechanism. Depend-
ing on whether the input data is labeled, FG-NAS can
dynamically adjust the weights of feature and gradient
proxies. By employing nonlinear combinations, FG-NAS
can amplify the impact of high-ranking proxies and
mitigate the interference of low-ranking ones, thereby
enhancing evaluation accuracy and robustness.

• Effectiveness. Experiments on the CIFAR-10/100 and
ImageNet16-120 datasets demonstrate that compared to
current mainstream zero-cost proxy methods, FG-NAS

can improve evaluation accuracy and reduce single-
network evaluation time.

This paper is organized as follows. The proposed framework
is shown in Section II. The design details of FG-NAS are
discussed in Section III. The experiments and analysis are
given in Section IV. Finally, we conclude with Section V.

II. PROPOSED FRAMEWORK

A. System Model

As shown in Fig. 2, our system model consists of four types
of entities as follows.

• EDs. Due to limitations in computational power and
storage capacity, EDs can typically only deploy and
run models that have been distilled and quantized. In
addition, they can communicate with a cloud server via
an unstable wireless network connection for offline model
training and downloading.

• Cloud server. A cloud server has sufficient compu-
tational power and storage for offline model training.
During online inference, the cloud server is not involved.

• SuperNet. A supernet is a vast collection of neural
network architectures. Training and evaluating them re-
quire significant computational resources, so supernets
are typically stored on cloud services.

• SubNet. Optimal network models are tailored for EDs.
The proposed FG-NAS consists of nine steps as follows.

1) Upload data characteristics. The EDs upload local data
to the cloud server.

2) Input SuperNet. We use local data and the entire Super-
Net set as the input for FG-NAS.

3) Calculate the Feature Information Score. During forward
propagation, the local data from the EDs undergoes PCA
dimensionality reduction to obtain the Information Quan-
tity, and the Feature Information Score SFI is calculated
using the relevant data characteristics and formulas.

4) Calculate the Feature Correlation Score. During forward
propagation, the local data from the EDs undergoes
PCA dimensionality reduction to obtain the correlation
evaluation metrics, and the Feature Correlation Score
SFC is calculated using the relevant formula.

5) Generate Jacobian matrix. The Jacobian Matrix is cal-
culated using the Rademacher random vector.

6) Calculate Gradient Variation Rate Score. We calculate
the Gradient Variation Rate Score SGC using Spectral
Norms σ and the Jacobian Matrix.

7) Important Layer Selection. We select the important layer
architecture using the Gradient Variation Rate Score SGC

and Spectral Norms σ.
8) Calculate the Important Gradient Score. We calculate

the Important Gradient Score SGI using the mean and
variance of gradients during backpropagation.

9) Output the SubNet ranking and send the optimal SubNet
to the EDs. We obtain the comprehensive score S based
on the four individual scores (SFI , SFC , SGC , SGI) and
select the network model with the highest comprehensive

Features
after PCA

Features
after PCA

Feature
Information

Score
Feature

Correlation
Score

Gradient
Variation

Rate Score
Important
Gradient

Score

Jacobian
Matrix

Rademacher
random
vector

Spectral
norms

Correlation
Rank

Mean
Variance

Information
Quantity

Important
Layer

SelectionImportant
Layer

Cloud Sever

SuperNet SubNets

Local Update
①

② ③ ④

⑤

⑥

⑦

⑧

⑨

Local Update

Local Update

ED

ED

ED

Fig. 2. The overview of FG-NAS. ① Upload data characteristics. ② Input SuperNet. ⑤ Generate Jacobian matrix. ⑨ Output the SubNet ranking and send
the optimal SubNet to the ED.

score. Finally, the cloud server sends this network model
to the corresponding ED.

B. Problem Formulation

The proposed FG-NAS aims to address the problem of
efficient and accurate zero-cost neural architecture search
for heterogeneous, resource-constrained EDs in a cloud-edge
collaborative system [12]. We have the following definitions.

• S is the Supernet hosted on the cloud server, representing
the SuperNet of candidate neural network architectures.

• A = {M1,M2, ...,MK} ⊆ S is the set which is K
distinct subnet architectures.

• N is the number of participating EDs.
• Di is the local data characteristics provided by the i-

th ED, for i ∈ {1, ..., N}. Let Di denote the space of
characteristics for EDi, and D = {D1, ..., DN}. These
characteristics are uploaded to the cloud server.

• Ci is the set of resource constraints for the i-th ED, such
as computational resources and storage capacity.

• α ∈ {0, 1} is a flag that indicates the availability of labels
for the data used in proxy calculation.

Other main symbolic parameters are shown in Table I.
The core task is to develop an efficient zero-cost evaluation
function executed on the cloud server. We denote this function
as E, which is defined as

E : A×Di × {0, 1} → R, (1)

where E takes a candidate architecture M ∈ A, the data
characteristics Di ∈ Di relevant to a target EDi, and the
label availability flag α. It outputs a scalar score sM,i =
E(M, Di, α) that predicts the suitability or potential perfor-
mance of M for EDi without requiring full training. The
score sM,i should estimate the true Performance(M|Di, Ci),
which is typically obtained only after costly training and

deployment. The underlying goal for NAS in this context is
often to find an architecture M∗ that solves

M∗ = arg max
M∈A

Performance(M|Di),

subject to constraints Ci.
(2)

Since solving (2) directly is infeasible due to the cost
of evaluating Performance(·), we aim to leverage the zero-
cost evaluation function E to generate a ranked list R =
(M(1),M(2), ...,M(K)) of all architectures in A, which is
ordered by the scores sM,i. This ranking R should effectively
approximate the ideal ranking R∗ derived from the true
Performance(·). The quality of the ranking R is assessed by
its correlation with R∗, aiming to maximize a rank correla-
tion coefficient (i.e., Spearman coefficient ρ). Therefore, the
optimization problem of this paper can be defined as

Maximize ρ(R,R∗), (3)

where R∗ is the ground-truth ranking based on actual perfor-
mance under constraints Ci.

As can be seen from the above optimization problem,
the main challenge of this paper is to design a zero-cost
evaluation function based on (1). It should be computationally
efficient and capture architecture potential with limited and
heterogeneous data. The function robustly combines multiple
proxy signals and adapts to label availability α. It produces a
reliable ranking based on (3) to guide the selection of optimal
SubNets M∗, which are suitable for deployment on diverse
EDs under specific constraints Ci.

III. THE DESIGN DETAILS OF FG-NAS

A. Feature Proxy Based on Forward Propagation

The original feature matrix is denoted as Fi ∈ Rc×n to
represent the c-dimensional output characteristics of the i-
th layer, where n indicates the number of characteristics.
The characteristics are centralized by performing a mean

TABLE I
LIST OF MAIN SYMBOLIC PARAMETERS

Symbol Descriptions
d Number of eigenvalues
n Total number of networks
v Amount of feature information retained
ρ Pearson correlation coefficient between features
S A Supernet encompassing a multitude of network architectures
Q Information content
D The set of input data characteristics from all EDs
M Total number of training samples
Di The data feature of the current ED
f i
i The mean of the i-th row

M∗ A best-suited network architecture for the ED
f i,m
l The m-th feature point in the i-th row
SFI Network feature information content score
SGI Important layer gradient information score
SFC Total feature correlation score
SGC Neural network gradient change rate score
Fi(k) The k-th column eigenvector in the feature matrix
Blockl Operation of the neural network module at l -th layer

normalization on each column of the feature matrix (i.e., each
feature), ensuring that the mean of each feature is zero, which
is defined as

F i(k) = Fi(k)−
1

n

∑n

k=1
Fi(k), (4)

where Fi(k) is the k-th column feature vector in the feature
matrix, with the size of c × 1. The covariance matrix Ci

can measure the correlation between characteristics, which is
given by

Coi =
1

n− 1
F

⊺
i F i, (5)

where Coi ∈ Rn×n can be used to determine the direction of
maximum variation in the neural network characteristics. The
eigenvalues are sorted, and the Top-k largest eigenvalues λ
are selected by

V =
∑k

i=1

λi∑d
i=1 λi

≥ v, (6)

where d is the number of eigenvalues and v is the amount
of retained feature information, which is typically set to 0.9.
The eigenvectors p that satisfy this condition are used to
form a new matrix V ∈ Rn×k. Finally, the feature matrix
Fi is mapped to the new vector space, resulting in a reduced-
dimensionality feature matrix fi ∈ Rc×k, which is given by

fi = fiV. (7)

The amount of information Q is calculated by

Q = −k log p, (8)

where k is a constant. For a dataset of size n, denoted by the
probability pi for each occurrence, the entropy of this dataset
is calculated by

S = −k
∑n

i=1
pi log pi. (9)

The feature matrix distribution of each layer of the neural
network output can be defined as

p(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
, (10)

where x is the element in the feature matrix and σ is the
variance of the feature matrix. Based on (9) and (10), the
calculation formula is given by

S[fi] =
ln (2πσ2) + 1

2
, (11)

where S[fi] is the information quantity of the i-th layer feature
and fi is the output feature matrix of the i-th layer in the
neural network. Finally, the total feature information of the
network is the sum of all layer-wise information quantities

SFI =
∑N

l=1
S [fl] , (12)

where SFI is the feature information score of the network and
N is the number of primary blocks in the neural network.

For a feature matrix fi ∈ Rc×k, and l is the output of the l-
th layer of a neural network, the Pearson correlation coefficient
between characteristics is calculated by

ρ(f i
l , f

j
l) =

∑k
m=1

(
f i,m
l − f

i

l

)(
f j,m
l − f

j

l

)
√∑k

m=1

(
f i,m
l − f

i

l

)2 (
f j,m
l − f

j

l

)2
, (13)

where f i
l is the i-th row of the feature matrix, f i,m

l is the
m-th feature point in the i-th row, and f̄ i

l is the mean of the
i-th row. Let sum(Pfl) denote the sum of all elements in the
Pearson correlation matrix Pfl ∈ Rc×c. For the feature matrix
fl ∈ Rc×k, its nuclear norm is defined as the trace of the
square root of the product of the matrix and its transpose.
The nuclear norm is calculated by

∥ fl ∥nuc= tr

(√
fT
l fl

)
. (14)

Finally, by calculating the ratio of the nuclear norm to
the feature correlation coefficient, the total feature correlation
score SFC can be defined as

SFC =
∑N

l=1

∥fl∥nuc
sum (Pfl)

. (15)

B. Gradient Proxy Based on Backpropagation

For the l-th layer, the Jacobian matrix is calculated by

Jl =
∂fl

∂fl−1
, (16)

where, the partial derivative of the current output fl with
respect to the input fl−1. During the forward propagation of
a neural network, for the input fl−1 ∈ Rc×n of any main
module, it undergoes relatively complex transformations to
produce the output fl ∈ Rc′×n, which can be approximated
as a linear transformation

fl = Blocklfl−1 ≈ Alfl−1, (17)

where Blockl is the neural network module operation at the
l-th layer and Al is the approximate linear transformation
matrix, the gradient propagation for the backpropagation is
calculated by

gl - 1 ≈AT
l gl = Jlgl, (18)

where gl is the gradient of the l-th layer, thus the linear
transformation matrix AT

l is the Jacobian matrix of the l-th
layer Jl ∈ Rc′×c. Inspired by the Hutchinson method, FG-
NAS introduces a Rademacher random vector v ∈ Rc × 1 to
approximate the Jacobian matrix Jι, where the elements of the
vector are randomly drawn from {1, −1} with equal probabil-
ities. When calculating expectations, v follows a Rademacher
distribution, which has three important properties

E[vi] = 0;E[v2i] = 1;E[vivj] = 0, (19)

where i ̸= j. FG-NAS uses vector v to replace gradient g dur-
ing backpropagation, obtains vector v′ through the Jacobian
matrix, and multiplies v′ on both sides of the equation, and
the expectation of both sides is calculated by

E[v′vT] = E[Jlvv
T] = JlE[vvT] = Jl. (20)

According to the expected property of the Rademacher
random vector, E[vvT] is the unit matrix, so we only need
to find the mean of v′vT to get the Jacobian matrix. In
the actual calculation process, multiple v′ are obtained by
calculating multiple random samples v, and finally their mean
is calculated by

v′k = Blockl(v
T
k), Jl =

1

n

∑n

k=1
v′kv

T
k , (21)

where Blockl is the operation of the back propagation of the
l-th layer of the neural network. Finally, the Jacobian matrix is
decomposed into singular values, and then the spectral norm
is calculated by

Jl = UMV T , σl = ∥Jl∥2 = σmax(M), (22)

where M is a diagonal matrix, and the spectral norm of the
Jacobian matrix Jt is the maximum value in the diagonal
matrix. The neural network gradient change rate score is
calculated by

SGC =
∑N

l=1
2− σl −

1

σl
. (23)

During each training iteration, the neural network calculates
the gradient of the loss function concerning each parameter
through backpropagation. This gradient determines the di-
rection and magnitude of the parameter updates. The mean
gradient is calculated by

E[g(x)] =
1

M

∑M

i=1

∣∣∣∣∂L (xi, yi; θ)

∂θ

∣∣∣∣ , (24)

where L(xi, yi; θ) is the loss function of the network for the i-
th sample (xi, yi), θ is the parameter of the current layer, and

M is the total number of training samples. Then, the gradient
variance can be given by

V ar[g(x)] =
1

M

∑M

i=1

(
∂L(xi, yi; θ)

∂θ
− E[g(xi)]

)2

.

(25)
To accelerate network evaluation and reduce computational

overhead, FG-NAS uses the gradient change rate σι as an
importance evaluation metric to select layers where gradients
can propagate stably for computation. Given a range of
gradient changes {σl ∈ [k,m] | 0 ⩽ k ⩽ 1,m ⩾ 1}, FG-
NAS selects important layers within the specified range to
calculate the mean and variance of the gradients and finally
computes the average. The gradient information score SGI of
the important layers is defined as

SGI =
1∑N

l=1(1 |σl)

∑N

l=1

(
E[g(x)]

V ar[g(x)]
|σl

)
. (26)

After setting the extraction ratio γ of important layers, k
and m can be calculated by∑N

l=1
(1 |σl) = γN, (27)

where km = 1 and the important layer proportion γ is
generally set within [0.9, 0.5].

C. Dynamic Nonlinear Aggregation

FG-NAS adopts a nonlinear combination method that in-
tegrates logarithmic and exponential functions to combine
gradient-based metrics with feature map-based metrics for
calculating network rankings. Since the gradient information
computation of important layers relies on data labels [23], to
better adapt to different data distributions, FG-NAS introduces
a coefficient α ∈ {0, 1}, which indicates whether the input
data has labels. When input data lacks labels, we set α = 0.
The gradient-based proxy ranking RG is calculated by

RG =

{
ln (RGIRGC) +R2

GI +R2
GC , α = 1

RGC , α = 0
(28)

where RGI and RGC are the important layer gradient infor-
mation and gradient change rate proxy ranking, respectively.
The feature-based proxy ranking RF is calculated by

RF = ln (RFIRFC) +R2
FI +R2

FC , (29)

where RFI and RFC are the feature information quantity and
correlation proxy ranking, respectively. Based on RG and RF ,
the overall ranking R of the network is defined as

R = ln (RFRG) +R2
F +R2

G. (30)

D. Complexity Analysis of FG-NAS

We analyze the computational complexity of the proposed
FG-NAS method for evaluating a single candidate network
architecture M ∈ A. The complexity depends on several
factors, such as L, the number of principal layers/blocks ana-
lyzed, M , the mini-batch size, c× n, the feature map dimen-
sions before PCA, c×k, the dimensions after PCA, Nrad, the

Algorithm 1: FG-NAS
Input: SuperNet, Input data, Labeled flag
Output: Ranked list R of SubNets

1 Initial Rankings = Empty list
2 for each SubNet ∈ SuperNet do
3 features = ForwardPropagation(SubNet, input data)
4 F = PCA(features)
5 Feature Information Score:

6 S [fl] =
ln(2πσ2)+1

2
, fl ∈ F

7 SFI =
∑N

l=1 S [fl]
8 Feature Correlation Score:

9 ∥ fl ∥nuc= tr
(√

fT
l fl

)
10 SFC =

∑N
l=1

∥fl∥nuc

sum(Pfl)
11 Gradient Change Rate Score:
12 Jl = UMV T

13 σl = ∥Jl∥2 = σmax(M)

14 SGC =
∑N

l=1 2− σl − 1
σl

15 Important Layer Gradient Information Score:
16 E[g(x)] = ComputeGradientMean(Input data)
17 V ar[g[x]] = ComputeGradientV ariance(Input data)

18 SGI = 1∑N
l=1

(1 |σl)

∑N
l=1

(
E[g(x)]

V ar[g(x)]
|σl

)
19 RF = ln (RFIRFC) +R2

FI +R2
FC

20 if Labeled flag = 1 then
21 RG = ln (RGIRGC) +R2

GI +R2
GC

22 else
23 RG = RGC

24 end
25 return R = ln (RFRG) +R2

F +R2
G

26 end
27 function ComputeGradientMean(Inputdata)
28 begin
29 for each sample i = 1, ...,M do
30 gi =

∂L(xi,yi;θ)
∂θ

31 end
32 return E[g(x)] = 1

M

∑M
i=1 gi

33 end
34 function ComputeGradientV ariance(Inputdata)
35 begin
36 for each sample i = 1, ...,M do

37 vi =
(

∂L(xi,yi;θ)
∂θ

− E [g (x)]
)2

38 end
39 return V ar[g(x)] = 1

M

∑M
i=1 vi

40 end

number of Rademacher samples for Jacobian approximation,
and the single-sample forward/backward propagation costs
(Fops and Bops). The n is the feature dimension per channel,
which is consistent with its use in Section III-A.

1) Feature Proxies (SFI and SFC). Calculation requires one
initial forward propagation for the mini-batch (O(M ·Fops)).
Subsequent per-layer operations include PCA dimensionality
reduction and computations for entropy, correlation, and nu-
clear norm, with matrix operation costs (Cmatrix,F) primarily
dependent on dimensions L, c, n, k.

2) Gradient Proxies (SGC and SGI). These proxies re-

quire backpropagation. Computing SGC involves Jacobian
approximation using Nrad Rademacher samples (requiring
computation roughly equivalent to O(L ·Nrad) partial back-
ward propagation, cost B′

ops each) and SVD computation
(O(L ·CSV D(c, c′))). Computing SGI requires standard back-
propagation for the mini-batch (O(M · Bops)). The cost is
dominated by the backward propagation.

3) Aggregation.
Combining the four proxy scores involves a constant num-

ber of arithmetic operations per network, resulting in negligi-
ble complexity O(1).

4) The total complexity per architecture is the sum of the
costs for feature and gradient proxies, which is O(MFops +
(LNradB

′
ops+MBops)+L ·Cmatrix ops). The Cmatrix ops is

the significant per-layer cost of matrix operations (including
PCA, Correlation, Nuclear Norm, SVD). As M and Nrad are
typically small constants, the complexity is primarily deter-
mined by a limited number of forward/backward propagation
and matrix computations. Therefore, the proposed FG-NAS
method maintains a low computational complexity per archi-
tecture evaluation compared to training-based approaches.

IV. PERFORMANCE EVALUATION

A. Experimental Settings

Experimental Environment. All experiments in this sec-
tion are conducted on the cloud server equipped with two
NVIDIA A100 GPUs with 80GB memory and 256GB RAM.
We choose several Jetson Xavier NX development boards
equipped with 8GB memory and 6-core ARM CPUs as EDs.

SuperNets. We have three SuperNets as follows.
• NAS-Bench-201 [14] consists of 15,625 network architec-

tures, each utilizing a unique cell structure. It provides
various evaluation metrics, such as test accuracy and
training loss on the CIFAR-10/100 datasets.

• MobileNetV2 [15] includes candidate architectures built
using inverted residual blocks, which vary in block depth,
width, and expansion ratio.

• AutoFormer [16] is specifically designed to evaluate NAS
methods for Vision Transformers, which can be divided
into tiny, small, and base subsets based on model size.

Datasets. We have three datasets as follows.
• CIFAR-10 [17] dataset contains 60, 000 32 × 32 pixel

color images, divided into 10 classes, with 6, 000 images
per class. It is used for image-classification tasks and is
commonly employed to test model performance.

• CIFAR-100 [17] dataset contains 100 classes with 600
32×32 pixel images per class. It is often used to evaluate
model performance on multi-class classification tasks.

• ImageNet16-120 [18] dataset is a subset of the ImageNet
dataset used for image classification tasks. It includes 120
classes, with 1, 280 images per class, totaling 153, 600
images. The images in IN16-120 are 16 × 16 pixels,
making them smaller than the original ImageNet dataset,
which is used for rapid training and experimentation.

Baselines. We have eight baseline methods as follows.

TABLE II
CORRELATION BETWEEN DIFFERENT ZERO-COST PROXIES AND MODEL

ACCURACY IN THE NAS-BENCH-201 SUPERNET

Method Spearman ρ Time(ms)
CIFAR-10 CIFAR-100 ImageNet16-120

#Params/FLOPS 0.753 0.727 0.691 -
SNIP 0.615 0.619 0.539 304.8

NASWOT 0.743 0.769 0.760 33.1
TE-NAS 0.731 0.728 0.680 1209.1

ZiCo 0.809 0.785 0.778 342.6
FG-NAS 0.853 0.849 0.843 316.3

TABLE III
EXPERIMENTAL RESULTS IN THE MOBILENETV2 SUPERNET

Constraint
(Params, FLOPs)

Method Type Top-1
Search Cost
(GPU Days)

(5M, 600M)
OFA TB 78.7 50
ZiCo TF 79.1 0.4

FG-NAS TF 79.5 0.35

(3M, 450M)
OFA TB 77.7 50
ZiCo TF 78.1 0.4

FG-NAS TF 78.4 0.33

• #Params/FLOPS [19]. The number of parameters or
floating-point operations (FLOPS) is directly used as
an indicator of network complexity and potential per-
formance. Generally, networks with more parameters
possess stronger learning capabilities but incur higher
computational costs.

• SNIP(B) [20] evaluates network trainability by measuring
the sensitivity of individual weights to the loss function.
A higher overall sensitivity indicates greater trainability
and a stronger potential for effective training.

• NASWOT(F) [21] analyzes the correlation of activation
values during the forward propagation. Lower correlation
among activations suggests a better ability to partition
the input space and extract diverse characteristics, thus
implying stronger representational power.

• TE-NAS(G+L) [8] evaluates network representational ca-
pacity and trainability. It measures the number of linear
regions and the Neural Tangent Kernel (NTK) condition
number. More linear regions and smaller condition num-
bers indicate better performance and easier training.

• ZiCo(B) [22] assesses trainability by analyzing the distri-
bution of network gradients. Networks with higher mean
gradients and lower standard deviations exhibit more
stable training behavior and superior trainability.

• TF-TAS(G+L) [24] evaluates network performance by
combining its expressive capacity and task adaptability.

• OFA [25] achieves adaptation to different network con-
figurations with a single training by training a supernet
that supports multiple sub-networks.

• AutoFormer [16] employs a weight-sharing supernet and
progressive shrinking to efficiently search Transformer
architectures. It directly evaluates subnet performance
using inherited weights without retraining, significantly
reducing search time and resource consumption.

Metrics. We have three metrics as follows.
• Spearman coefficient ρ is used to assess the relationship

between the predicted ranking of networks and their
actual performance, which is given by

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, (31)

where di is the difference between the predicted ranking
and the actual ranking for the i-th network, and n is the
total number of networks.

• Single network evaluation time, i.e., the time required to
obtain the comprehensive ranking of the network using
the current method.

• Top-1 accuracy refers to the classification accuracy of
the searched neural network on the test set, i.e., the
proportion of instances where the predicted label matches
the true label, which is given by

Top-1 =
Number of correctly predicted samples

Total number of samples
. (32)

B. Correlation Comparison Analysis

To validate the accuracy of FG-NAS in predicting network
accuracy, we conduct experiments on the NAS-Bench-201
SuperNet, calculating Spearman coefficient ρ and evaluation
time. In each run, 3, 000 networks are randomly sampled for
evaluation, and the experiment is repeated 5 times to compute
the average results. The experimental results are shown in
Table II. This experiment is conducted on a public server.

FG-NAS performs best in terms of correlation, achieving
improvements of 0.044, 0.064, and 0.065 over the best base-
line ZiCo across three datasets, while reducing the single
network evaluation time by approximately 74% compared to
the multi-proxy [28] method TE-NAS. Compared to TE-NAS,
FG-NAS utilizes feature information and feature correlation
during forward propagation to measure the network’s feature
extraction capability, making it applicable to all types of
networks. To assess gradient propagation stability, FG-NAS
replaces gradients with Rademacher random vectors to op-
timize matrix computations, thereby reducing computational
load. Compared to ZiCo, FG-NAS incorporates feature-based
metrics [26] to enhance search accuracy and reduce the
dependency on data labels. To further decrease computational
complexity, FG-NAS uses the gradient change rate as an
importance selection metric, selecting layers with stable gra-
dient propagation for gradient computation. Additionally, FG-
NAS employs dynamic nonlinear aggregation to emphasize
high-ranking metrics and penalize low-ranking ones, which
improves the accuracy of network performance prediction.

C. Comparison of NAS under Resource Constraints.

We conduct comparative experiments in the MobileNetV2
SuperNet and the AutoFormer SuperNet, respectively. Our
experiments broadly categorize NAS methods [27] into two
primary categories, such as Training-Based (TB) and Training-
Free (TF). The experiments in this section are conducted on
the embedded Jetson Xavier NX edge device.

TABLE IV
EXPERIMENTAL RESULTS IN THE AUTOFORMER SUPERNET

Constraint
(Params, FLOPs)

Method Type Top-1
Search Cost
(GPU Days)

(25M, 5G)
AutoFormer TB 74.7 24

TF-TAS TF 75.3 0.5
FG-NAS TF 75.9 0.25

(5M, 1.5G)
AutoFormer TB 81.7 24

TF-TAS TF 81.9 0.6
FG-NAS TF 82.0 0.31

0.809
0.801

0.782

342.6

315.2

278.2

251.5

226.3

203.7

176.2

1 0.9 0.8 0.7 0.6 0.5 0.4
0.65

0.70

0.75

0.80

0.85

S
p

ea
rm

an
 ρ

IRL

 CIFAR-10 CIFAR-100 ImageNet16-120

150

200

250

300

350

400

 Evaluation Time

E
v

al
u

at
io

n
 T

im
e

(m
s)

-0.008

-0.019

-116.3 ms

Fig. 3. Ablation Experiment with Different Importance Layer Ratios

The experiment firstly compares FG-NAS with the training-
based method OFA and the best zero-cost proxy method ZiCo
on MobileNetV2. During the search process, an evolutionary
search strategy is employed, with the evolutionary algorithm
set to iterate 100, 000 times to ensure thorough exploration of
the entire SuperNet. The candidate set size is 1024, and each
iteration selects the highest-ranked network for evolutionary
mutation. The experimental results are shown in Table III.
Under the given constraints, FG-NAS achieves the best experi-
mental results, outperforming the training-based OFA method.
FG-NAS completes the search process in just 0.35 and 0.33
days under the two constraint conditions, respectively, and
improves accuracy by 0.4% and 0.3% compared to ZiCo. This
demonstrates the efficiency of FG-NAS. FG-NAS reduces the
computational load of the evaluation process by retaining cal-
culations from important layers and improves the accuracy of
evaluation results through a combination of zero-cost proxies
from multiple perspectives, thereby enhancing the precision
of the search outcomes.

The experiment on AutoFormer compares FG-NAS with
the training-based method AutoFormer and the best Trans-
former architecture search method TF-TAS. The experiment
sets constraints on the Tiny and Small subsets, respectively,
and randomly samples 10, 000 architectures for evaluation.
The experimental results are shown in Table IV. Under the
given constraints, compared to the TF-TAS method, FG-NAS

TABLE V
EXPERIMENTAL RESULTS OF FG-NAS ABLATION

Method
Spearman ρ

Time(ms)
CIFAR-10 CIFAR-100 ImageNet16-120

-FP 0.803 0.782 0.779 282.6
-GP 0.787 0.771 0.762 36.7
-NL 0.839 0.815 0.798 311.4

FG-NAS 0.853 0.849 0.843 316.3

reduces the search time by approximately 50%, while im-
proving the accuracy of the search results by 0.6% and 0.1%,
respectively. The experimental results demonstrate that FG-
NAS is not limited to specific types of network architectures,
validating the generalization capability of the feature-based
proxy and gradient-based proxy approach.

D. FG-NAS Ablation Experiments

FG-NAS is primarily divided into three components such
as Feature Proxy (FP), Gradient Proxy (GP), and Dynamic
Nonlinear Aggregation (NL). To determine the impact of three
components on FG-NAS, we conduct ablation experiments
and compare the results with the original method in the NAS-
Bench-201. The experimental results are shown in Table V.
To validate the effectiveness of the important layer selection
strategy, we compare different Important Layer Ratios (ILR).
The experimental results are presented in Fig. 3.

The experimental results in Table V firstly indicate that
the gradient proxy has the highest correlation with model
accuracy. After removing the gradient proxy, the Spearman
coefficient ρ on the CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets decrease by 0.066, 0.078, and 0.081, respectively.
This is because gradient-related information can reflect the
trainability of the network. Secondly, after removing the
feature proxy, the Spearman coefficient ρ on the three datasets
decreases by 0.050, 0.067, and 0.064, respectively, demon-
strating that the amount of feature information and feature
correlation effectively reflect the network’s feature extraction
capability. Finally, when replacing the Dynamic Nonlinear
Aggregation (NL) with Linear Aggregation (L), the experi-
mental results on the three datasets decrease by 0.014, 0.034,
and 0.045, respectively. This suggests that linear aggregation
cannot effectively handle the differences between the scores of
various proxies, leading to network selection bias. In contrast,
nonlinear aggregation can emphasize high-ranking proxies and
penalize low-ranking ones, enabling neural architecture search
to focus more on network architectures that consistently rank
high across proxies.

As shown in Fig. 3, when the Important Ratio of Layers
(IRL) is set to 0.6, the Spearman coefficient ρ on CIFAR-
10 drops by only 0.008, while the evaluation time drops by
116.3 ms. This indicates that the important layer selection
strategy can minimize evaluation time without significantly
compromising assessment accuracy. However, when the IRL
is further reduced to 0.5, the Spearman coefficient ρ drops

substantially 0.019 because excessive layer removal leads to
critical information loss.

V. CONCLUSION

To tackle the problems of weak correlation between zero-
cost proxies and model accuracy, heavy reliance on labeled
data, high computational demand, and wasteful consumption
of cloud server computational resources, we propose a non-
linear aggregation-based Neural Architecture Search method
based on Feature and Gradient zero-cost proxies (FG-NAS).
Specifically, FG-NAS evaluates neural architectures globally
by combining feature proxies from forward propagation and
gradient proxies from backward propagation. It quantifies
feature information and correlation to enhance forward proxy
reliability and assesses training capability through gradient
change rate and mean-variance. An importance selection strat-
egy reduces gradient computation, while dynamic nonlinear
aggregation adjusts proxy weights based on data labels, which
improves evaluation accuracy and search efficiency. Experi-
ments on the CIFAR-10, CIFAR-100, and ImageNet16-120
datasets demonstrate that compared to current mainstream
zero-cost proxy methods, FG-NAS can improve evaluation
accuracy by an average of 1.04% and reduce single-network
evaluation time by up to 2.45%. These improvements demon-
strate that FG-NAS is a promising method to significantly
improve the accuracy of neural architecture evaluation and
save computational resources on EDs.

ACKNOWLEDGMENT

This work was supported in part by the Key Re-
search and Development Program of China under Grant
2022YFC3005401; in part by the Technology Talent
and Platform Program of Yunnan Province under Grant
202405AK340002; in part by the Technology Project of Hua-
neng Group under Grant HNKJ20-H46 and Grant HNKJ24-
H167; and in part by the High Performance Computing
Platform, Hohai University. (Corresponding authors: Yingchi
Mao and Benteng Zhang.)

REFERENCES

[1] B. Zhang et al., “Overcoming Forgetting Using Adaptive Federated
Learning for IIoT Devices With Non-IID Data,” in IEEE Internet of
Things Journal, vol. 12, no. 12, pp. 21025-21037, 15 June 15, 2025.

[2] D. Yao and B. Li, “PerFedRLNAS: One-for-All Personalized Federated
Neural Architecture Search,” AAAI, vol. 38, no. 15, pp. 16398-16406,
Mar. 2024.

[3] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement
Learning,” arXiv arXiv:1611.01578, 2016.

[4] H. Zhou, J. Peng, C. Liao, and J. Li, “Application of Deep Learning
Model Based on Image Definition in Real-Time Digital Image Fusion,”
J Real-Time Image Proc, vol. 17, no. 3, pp. 643–654, Jun. 2020.

[5] N. H. Luong, Q. M. Phan, et al., “Lightweight Multi-Objective Evo-
lutionary Neural Architecture Search with Low-Cost Proxy Metrics,”
Information Sciences, vol. 655, p. 119856, 2024.

[6] J. Lukasik, M. Moeller, and M. Keuper, “An Evaluation of Zero-Cost
Proxies-From Neural Architecture Performance Prediction to Model
Robustness,” International Journal of Computer Vision, pp. 1–18, 2024.

[7] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural Architecture
Search without Training,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), PMLR, 2021, pp. 7588–7598.

[8] W. Chen, X. Gong, and Z. Wang, “Neural Architecture Search on
ImageNet in Four GPU Hours: A Theoretically Inspired Perspective,”
arXiv arXiv:2102.11535, 2021.

[9] M. Lin et al., “Zen-NAS: A Zero-Shot NAS for High-Performance
Image Recognition,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 347–356.

[10] I. U. Haq, B. S. Lee, and D. M. Rizzo, “TransNAS-TSAD: Harnessing
Transformers for Multi-Objective Neural Architecture Search in Time
Series Anomaly Detection,” Neural Comput & Applic, vol. 37, no. 4,
pp. 2455–2477, Feb. 2025.

[11] Y. Jiang, Z. Li, B. Zhao, X. Zhang, and X. Dong, “Foreign Object
Detection in the Inspection of Cloud Server Center Using Separable
Self-Attention,” Intelligent Service Robotics, vol. 18, no. 2, pp. 279–292,
Mar. 2025.

[12] B. Zhang, Y. Mao, X. He, P. Ping, H. Huang and J. Wu, “Exploring
the Privacy-Accuracy Trade-Off Using Adaptive Gradient Clipping in
Federated Learning,” in IEEE Transactions on Network Science and
Engineering, vol. 12, no. 3, pp. 2254-2265, May-June 2025.

[13] J. Lee, D. Kim, and B. Ham, “Network Quantization with Element-Wise
Gradient Scaling,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021, pp. 6448–6457.

[14] X. Dong and Y. Yang, “NAS-Bench-201: Extending the Scope of
Reproducible Neural Architecture Search,” arXiv arXiv:2001.00326,
2020.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted Residuals and Linear Bottlenecks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 4510–4520.

[16] M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching
Transformers for Visual Recognition,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp.
12270–12280.

[17] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features
from Tiny Images,” 2009.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A Large-Scale Hierarchical Image Database,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255, 2009.

[19] C. White, M. Khodak, R. Tu, S. Shah, S. Bubeck, and D. Dey, “A
Deeper Look at Zero-Cost Proxies for Lightweight Nas,” ICLR Blog
Track, 2022.

[20] Lee, Namhoon, Thalaiyasingam Ajanthan, and Philip HS Torr. “Snip:
Single-Shot Network Pruning Based on Connection Sensitivity.” arXiv
arXiv:1810.02340, 2018.

[21] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural Architecture
Search Without Training,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), PMLR, 2021, pp. 7588–7598.

[22] G. Li, Y. Yang, K. Bhardwaj, and R. Marculescu, “Zico: Zero-
shot NAS via Inverse Coefficient of Variation on Gradients,” arXiv
arXiv:2301.11300, 2023.

[23] B. Zhang, Y. Mao, X. He, H. Huang and J. Wu, “Balancing Privacy and
Accuracy Using Significant Gradient Protection in Federated Learning,”
in IEEE Transactions on Computers, vol. 74, no. 1, pp. 278-292, Jan.
2025.

[24] Q. Zhou et al., “Training-Free Transformer Architecture Search,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022, pp. 10894–10903.

[25] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-All:
Train One Network and Specialize it for Efficient Deployment,” arXiv
arXiv:1908.09791, 2019.

[26] N. Sinha, A. El Rahman Shabayek, A. Kacem, P. Rostami, C. Shneider,
and D. Aouada, “Hardware Aware Evolutionary Neural Architecture
Search Using Representation Similarity Metric,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision,
2024, pp. 2628–2637.

[27] B. Wu, X Dai, P Zhang, Y Wang, F Sun, Y Wu, Y Tian, P Vajda,
Y Jia, K Keutzer, “Fbnet: Hardware-Aware Efficient Convnet Design
via Differentiable Neural Architecture Search,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 10734–10742.

[28] Y. Xue, C. Chen, and A. Słowik, “Neural Architecture Search Based
on a Multi-Objective Evolutionary Algorithm with Probability Stack,”
IEEE Transactions on Evolutionary Computation, vol. 27, no. 4, pp.
778–786, 2023.

